Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Electrophoresis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573014

RESUMO

Mass spectrometry (MS) has revolutionized analytical chemistry, enabling precise identification and quantification of chemical species, which is pivotal for biomarker discovery and understanding complex biological systems. Despite its versatility, the presence of background ions in MS analysis hinders the sensitive detection of low-abundance analytes. Therefore, studies aimed at lowering background ion levels have become increasingly important. Here, we utilized the commercially available Active Background Ion Reduction Device (ABIRD) to suppress background ions and assess its effect on the liquid chromatography-electrospray ionization (LC-ESI)-MS analyses of N-glycans on the Q Exactive HF mass spectrometer. We also investigated the effect of different solvent vapors in the ESI source on N-glycan analysis by MS. ABIRD generally had no effect on high-mannose and neutral structures but reduced the intensity of some structures that contained sialic acid, fucose, or both when methanol vapor filled the ESI source. Based on our findings on the highest number of identified N-glycans from human serum, methanol vapor in the ion source compartment may enhance N-glycan LC-ESI-MS analyses by improving the desolvation of droplets formed during the ESI process due to its high volatility. This protocol may be further validated and extended to advanced bottom-up proteomic/glycoproteomic studies for the analysis of peptide/glycopeptide ions by MS.

2.
Cell Host Microbe ; 32(4): 588-605.e9, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38531364

RESUMO

Many powerful methods have been employed to elucidate the global transcriptomic, proteomic, or metabolic responses to pathogen-infected host cells. However, the host glycome responses to bacterial infection remain largely unexplored, and hence, our understanding of the molecular mechanisms by which bacterial pathogens manipulate the host glycome to favor infection remains incomplete. Here, we address this gap by performing a systematic analysis of the host glycome during infection by the bacterial pathogen Brucella spp. that cause brucellosis. We discover, surprisingly, that a Brucella effector protein (EP) Rhg1 induces global reprogramming of the host cell N-glycome by interacting with components of the oligosaccharide transferase complex that controls N-linked protein glycosylation, and Rhg1 regulates Brucella replication and tissue colonization in a mouse model of brucellosis, demonstrating that Brucella exploits the EP Rhg1 to reprogram the host N-glycome and promote bacterial intracellular parasitism, thereby providing a paradigm for bacterial control of host cell infection.


Assuntos
Brucella , Brucelose , Animais , Camundongos , Brucella/fisiologia , Proteômica , Brucelose/metabolismo , Retículo Endoplasmático/metabolismo
3.
Metabolites ; 13(8)2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37623861

RESUMO

Overfeeding and a lack of exercise are increasingly causing obesity in dogs, which has become a big problem threatening the health of dogs. Therefore, it is necessary to investigate how dietary regulations can help to improve dogs' body conditions and minimize obesity. This study was carried out to investigate the effects of dietary mulberry leaf powder (MLP) supplementation on the growth performance, lipid metabolism parameters, and gut microbiota of Chinese indigenous dogs. Fifteen Chinese indigenous dogs (6.34 ± 0.56 kg) were randomly assigned to three treatment groups and received either the control diet (CON), high-fat diet (HF), or high-fat diet containing 6% Mulberry leaf powder (MLP) for four weeks. The CON group received a basal diet, the HF group received a basal diet supplemented with 10% lard, and the MLP group received a basal diet supplemented with 10% lard and 6% MLP. The trial lasted for four weeks. The growth performance, lipid metabolism parameters, immune globulins, cytokines, and fecal microbiota were measured. Results showed that there was no significant difference in growth performance. The MLP group appeared to have decreased (p < 0.05) the serum level of low-density lipoprotein cholesterol (LDL-C) and apoliprotein-A1(APO-A1) in serum. The MLP group appeared to have higher (p < 0.05) serum immune globulin A (IgA) levels. UPGMA results showed that the MLP group was closer to the CON group than to the HF group. LEfSe analysis showed that dietary supplementation with MLP contributed to an alteration in the genus Alloprevotella, Sarcina, and species belonging to the Bacteroides and Lactobacillus genus. Overall, the dietary supplementation of 6% MLP can improve lipid metabolism conditions and immunity in high-fat-diet-fed dogs, and can alter the gut microbial composition of dogs.

4.
J Chromatogr A ; 1706: 464237, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37523904

RESUMO

Retention time is one of the most important parameters that has been widely used to demonstrate the separation results obtained from liquid chromatography (LC) platforms. However, retention time can shift when samples are tested with different instruments and laboratories, which hinders the identification process of analytes when comparing data collected from different LC systems. To address this problem, hydrophobicity index was introduced for retention time normalization of the glycopeptides separated by reversed-phase LC (RPLC). Tandem MS was used for the detection and identification of glycopeptides. In addition, the influence of different types of glycans on the hydrophobicity of peptide backbones was studied by comparing the retention time of glycopeptides with their non-glycosylated counterparts. The hydrophobicity of tryptic digested glycopeptides derived from model glycoproteins, including bovine fetuin, α1-acid glycoprotein, and haptoglobin from human plasma, were evaluated based on the hydrophobicity index of the standard peptides from a peptide retention time calibration mixture. The reduction of hydrophobicity of multiple peptide backbones was observed due to the hydrophilic glycan structures. By comparing the hydrophobicity index of glycopeptides collected from different time and instruments, the day-to-day and lab-to-lab comparisons suggested high reliability and reproducibility of this approach. The RSD% of hydrophobicity index from inter-lab experiments was 1.2%, while the RSD% of retention time was 5.1%. Then, the applications of this method were demonstrated on complex glycopeptide samples extracted from human blood serum. The hydrophobicity index can be applied to address the retention time shift when using different instruments, thereby boosting confidence of the characterization of glycopeptides.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Animais , Bovinos , Humanos , Cromatografia de Fase Reversa/métodos , Espectrometria de Massas em Tandem/métodos , Reprodutibilidade dos Testes , Glicopeptídeos/química , Interações Hidrofóbicas e Hidrofílicas , Polissacarídeos/química
5.
Mass Spectrom Rev ; 42(2): 577-616, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34159615

RESUMO

Glycosylation is one of the most significant and abundant posttranslational modifications in mammalian cells. It mediates a wide range of biofunctions, including cell adhesion, cell communication, immune cell trafficking, and protein stability. Also, aberrant glycosylation has been associated with various diseases such as diabetes, Alzheimer's disease, inflammation, immune deficiencies, congenital disorders, and cancers. The alterations in the distributions of glycan and glycopeptide isomers are involved in the development and progression of several human diseases. However, the microheterogeneity of glycosylation brings a great challenge to glycomic and glycoproteomic analysis, including the characterization of isomers. Over several decades, different methods and approaches have been developed to facilitate the characterization of glycan and glycopeptide isomers. Mass spectrometry (MS) has been a powerful tool utilized for glycomic and glycoproteomic isomeric analysis due to its high sensitivity and rich structural information using different fragmentation techniques. However, a comprehensive characterization of glycan and glycopeptide isomers remains a challenge when utilizing MS alone. Therefore, various separation methods, including liquid chromatography, capillary electrophoresis, and ion mobility, were developed to resolve glycan and glycopeptide isomers before MS. These separation techniques were coupled to MS for a better identification and quantitation of glycan and glycopeptide isomers. Additionally, bioinformatic tools are essential for the automated processing of glycan and glycopeptide isomeric data to facilitate isomeric studies in biological cohorts. Here in this review, we discuss commonly employed MS-based techniques, separation hyphenated MS methods, and software, facilitating the separation, identification, and quantitation of glycan and glycopeptide isomers.


Assuntos
Glicômica , Software , Animais , Humanos , Glicômica/métodos , Espectrometria de Massas , Polissacarídeos/análise , Glicopeptídeos/análise , Mamíferos
6.
Proteomics Clin Appl ; 17(2): e2200063, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36189891

RESUMO

PURPOSE: Chronic kidney disease (CKD) is defined by a reduced renal function, that is, glomerular filtration rate, and the extent of kidney damage is assessed by determining serum creatinine levels and proteins in urine, diagnosed as proteinuria/albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush border membranes (BBMs) on PT cells are important in maintaining the stability of PT functions. EXPERIMENTAL DESIGN: An LC-MS/MS bottom-up proteomics analysis of BBMs from four groups of rat models was applied to investigate protein abundance alterations associated with CKD progression. Moreover, systems biology analyses were used to identify key proteins that can provide insight into the different regulated molecular pathways and processes associated with CKD. RESULTS: Our results indicated that 303 proteins showed significantly altered expressions from the severe CKD BBM group when compared to the control. Focusing on renal diseases, several proteins including Ctnnb1, Fah, and Icam1 were annotated to kidney damage and urination disorder. The up-regulation of Ctnnb1 (ß-catenin) could contribute to CKD through the regulation of the WNT signaling pathway. CONCLUSION AND CLINICAL RELEVANCE: Overall, the study of protein abundance changes in BBMs from rat models helps to reveal protein corrections with important pathways and regulator effects involved in CKD. Although this study is focused on rat models, the results provided more information for a deeper insight into possible CKD mechanisms in humans.


Assuntos
Albuminúria , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Albuminúria/complicações , Albuminúria/diagnóstico , Microvilosidades , Cromatografia Líquida , Proteômica , Espectrometria de Massas em Tandem , Rim/metabolismo
7.
Biomolecules ; 12(11)2022 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-36358924

RESUMO

Aiming to reduce the gap between in vitro and in vivo environment, a complex culture medium, Plasmax, was introduced recently, which includes nutrients and metabolites with concentrations normally found in human plasma. Herein, to study the influence of this medium on cellular behaviors, we utilized Plasmax to cultivate two cancer cell lines, including one breast cancer cell line, MDA-MB-231BR, and one brain cancer cell line, CRL-1620. Cancer cells were harvested and prepared for transcriptomics and proteomics analyses to assess the discrepancies caused by the different nutritional environments of Plasmax and two commercial media: DMEM, and EMEM. Total RNAs of cells were extracted using mammalian total RNA extract kits and analyzed by next-generation RNA sequencing; proteomics analyses were performed using LC-MS/MS. Gene oncology and pathway analysis were employed to study the affected functions. The cellular invasion and cell death were inhibited in MDA-MB-231BR cell line when cultured in Plasmax compared to DMEM and EMEM, whereas the invasion, migration and protein synthesis of CRL-1620 cell line were activated in Plasmax in relative to both commercial media. The expression changes of some proteins were more significant compared to their corresponding transcripts, indicating that Plasmax has more influence upon regulatory processes of proteins after translation. This work provides complementary information to the original study of Plasmax, aiming to facilitate the selection of appropriate media for in vitro cancer cell studies.


Assuntos
Neoplasias da Mama , Proteômica , Animais , Humanos , Feminino , Cromatografia Líquida , Transcriptoma , Linhagem Celular Tumoral , Espectrometria de Massas em Tandem , Neoplasias da Mama/genética , Mamíferos
8.
J Biol Chem ; 298(10): 102371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35970386

RESUMO

Kidney disease often manifests with an increase in proteinuria, which can result from both glomerular and/or proximal tubule injury. The proximal tubules are the major site of protein and peptide endocytosis of the glomerular filtrate, and cubilin is the proximal tubule brush border membrane glycoprotein receptor that binds filtered albumin and initiates its processing in proximal tubules. Albumin also undergoes multiple modifications depending upon the physiologic state. We previously documented that carbamylated albumin had reduced cubilin binding, but the effects of cubilin modifications on binding albumin remain unclear. Here, we investigate the cubilin-albumin binding interaction to define the impact of cubilin glycosylation and map the key glycosylation sites while also targeting specific changes in a rat model of proteinuria. We identified a key Asn residue, N1285, that when glycosylated reduced albumin binding. In addition, we found a pH-induced conformation change may contribute to ligand release. To further define the albumin-cubilin binding site, we determined the solution structure of cubilin's albumin-binding domain, CUB7,8, using small-angle X-ray scattering and molecular modeling. We combined this information with mass spectrometry crosslinking experiments of CUB7,8 and albumin that provides a model of the key amino acids required for cubilin-albumin binding. Together, our data supports an important role for glycosylation in regulating the cubilin interaction with albumin, which is altered in proteinuria and provides new insight into the binding interface necessary for the cubilin-albumin interaction.


Assuntos
Albuminas , Asparagina , Túbulos Renais Proximais , Receptores de Superfície Celular , Animais , Ratos , Albuminas/metabolismo , Endocitose/fisiologia , Glicosilação , Túbulos Renais Proximais/metabolismo , Proteinúria/metabolismo , Asparagina/genética , Asparagina/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo
9.
Biomolecules ; 12(6)2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35740868

RESUMO

A complex physiological culture medium (Plasmax) was introduced recently, composed of nutrients and metabolites at concentrations normally found in human plasma to mimic the in vivo environment for cell line cultivation. As glycosylation has been proved to be involved in cancer development, it is necessary to investigate the glycan expression changes in media with different nutrients. In this study, a breast cancer cell line, MDA-MB-231BR, and a brain cancer cell line, CRL-1620, were cultivated in Plasmax and commercial media to reveal cell line glycosylation discrepancies prompted by nutritional environments. Glycomics analyses of cell lines were performed using LC-MS/MS. The expressions of multiple fucosylated N-glycans, such as HexNAc4Hex3DeoxyHex1 and HexNAc5Hex3DeoxyHex1, derived from both cell lines exhibited a significant increase in Plasmax. Among the O-glycans, significant differences were also observed. Both cell lines cultivated in EMEM had the lowest amounts of O-glycans expressed. The original work described the development of Plasmax, which improves colony formation, and resulted in transcriptomic and metabolomic alterations of cancer cell lines, while our results indicate that Plasmax can significantly impact protein glycosylation. This study also provides information to guide the selection of media for in vitro cancer cell glycomics studies.


Assuntos
Neoplasias Encefálicas , Espectrometria de Massas em Tandem , Linhagem Celular , Cromatografia Líquida , Humanos , Polissacarídeos/metabolismo , Espectrometria de Massas em Tandem/métodos
10.
PLoS Pathog ; 18(4): e1010167, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482787

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is one of the leading causes of food-borne illnesses worldwide. To colonize the gastrointestinal tract, S. Typhimurium produces multiple virulence factors that facilitate cellular invasion. Chitinases have been recently emerging as virulence factors for various pathogenic bacterial species, and the S. Typhimurium genome contains two annotated chitinases: STM0018 (chiA) and STM0233. However, the role of these chitinases during S. Typhimurium pathogenesis is unknown. The putative chitinase STM0233 has not been studied previously, and only limited data exists on ChiA. Chitinases typically hydrolyze chitin polymers, which are absent in vertebrates. However, chiA expression was detected in infection models and purified ChiA cleaved carbohydrate subunits present on mammalian surface glycoproteins, indicating a role during pathogenesis. Here, we demonstrate that expression of chiA and STM0233 is upregulated in the mouse gut and that both chitinases facilitate epithelial cell adhesion and invasion. S. Typhimurium lacking both chitinases showed a 70% reduction in invasion of small intestinal epithelial cells in vitro. In a gastroenteritis mouse model, chitinase-deficient S. Typhimurium strains were also significantly attenuated in the invasion of small intestinal tissue. This reduced invasion resulted in significantly delayed S. Typhimurium dissemination to the spleen and the liver, but chitinases were not required for systemic survival. The invasion defect of the chitinase-deficient strain was rescued by the presence of wild-type S. Typhimurium, suggesting that chitinases are secreted. By analyzing N-linked glycans of small intestinal cells, we identified specific N-acetylglucosamine-containing glycans as potential extracellular targets of S. Typhimurium chitinases. This analysis also revealed a differential abundance of Lewis X/A-containing glycans that is likely a result of host cell modulation due to the detection of S. Typhimurium chitinases. Similar glycomic changes elicited by chitinase deficient strains indicate functional redundancy of the chitinases. Overall, our results demonstrate that S. Typhimurium chitinases contribute to intestinal adhesion and invasion through modulation of the host glycome.


Assuntos
Quitinases , Salmonella enterica , Animais , Quitina , Quitinases/genética , Quitinases/metabolismo , Mamíferos , Camundongos , Salmonella enterica/metabolismo , Salmonella typhimurium , Sorogrupo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
11.
Analyst ; 147(10): 2048-2059, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35311852

RESUMO

Glycosylation is known as a critical biological process that can largely affect the properties and the functions of proteins. Glycan isomers have been shown to be involved in a variety of disease progressions. However, the separation and identification of glycan isomers has been a challenge for years due to the microheterogeneity of glycan isomeric structures. Therefore, effective and stable techniques have been investigated over the last few decades to improve isomeric separations of glycans. RPLC has been widely used in biomolecule analysis because of its extraordinary reproducibility and reliability in retention time and separation resolution. However, so far, no studies have achieved high resolution of glycan isomers using this technique. In this study, we focused on further boosting the isomeric separation of permethylated glycans using a 500 mm reversed-phase LC column. To achieve better resolutions on permethylated glycans, different LC conditions were optimized using glycan standards, including core- and branch-fucosylated N-glycan isomers and sialic acid linked isomers, which were both successfully separated. Then, the optimal separation strategy was applied to achieve separations of N- and O-glycan isomers derived from model glycoproteins, including bovine fetuin, ribonuclease B and κ-casein. Baseline separations were observed on multiple sialylated linkage isomers. However, the separation performance of high-mannose isomers needs further improvement. The reproducibility and stability of this long C18 column was also tested by doing run-to-run, day-to-day and month-to-month comparisons of retention times on multiple glycans and the %RSD was found less than 0.92%. Finally, we applied this approach to separate glycan isomers derived from complex biological samples, including blood serum and cell lines, where baseline separations were attained on several isomeric structures. Compared to the separation efficiency of PGC and MGC columns, the RPLC C18 column provides lower resolution but more robust reproducibility, which makes it a good complementary alternative for isomeric separations of glycans.


Assuntos
Cromatografia de Fase Reversa , Espectrometria de Massas em Tandem , Animais , Bovinos , Cromatografia Líquida , Isomerismo , Polissacarídeos/análise , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
12.
Electrophoresis ; 43(1-2): 119-142, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34505713

RESUMO

The wide variety of chemical properties and biological functions found in proteins is attained via post-translational modifications like glycosylation. Covalently bonded to proteins, glycans play a critical role in cell activity. Complex structures with microheterogeneity, the glycan structures that are associated with proteins are difficult to analyze comprehensively. Recent advances in sample preparation methods, separation techniques, and MS have facilitated the quantitation and structural elucidation of glycans. This review focuses on highlighting advances in MS-based techniques for glycomic analysis that occurred over the last 5 years (2017-2021) as an update to the previous review on the subject. The topics of discussion will include progress in glycomic workflow such as glycan release, purification, derivatization, and separation as well as the topics of ionization, tandem MS, and separation techniques that can be coupled with MS. Additionally, bioinformatics tools used for the analysis of glycans will be described.


Assuntos
Cromatografia , Glicômica , Espectrometria de Massas em Tandem , Glicosilação , Polissacarídeos
13.
Electrophoresis ; 43(1-2): 370-387, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614238

RESUMO

Protein glycosylation is one of the most common posttranslational modifications, and plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, host-pathogen interaction, and protein stability. Glycoproteomics is a proteomics subfield dedicated to identifying and characterizing the glycans and glycoproteins in a given cell or tissue. Aberrant glycosylation has been associated with various diseases such as Alzheimer's disease, viral infections, inflammation, immune deficiencies, congenital disorders, and cancers. However, glycoproteomic analysis remains challenging because of the low abundance, site-specific heterogeneity, and poor ionization efficiency of glycopeptides during LC-MS analyses. Therefore, the development of sensitive and accurate approaches to efficiently characterize protein glycosylation is crucial. Methods such as metabolic labeling, enrichment, and derivatization of glycopeptides, coupled with different mass spectrometry techniques and bioinformatics tools, have been developed to achieve sophisticated levels of quantitative and qualitative analyses of glycoproteins. This review attempts to update the recent developments in the field of glycoproteomics reported between 2017 and 2021.


Assuntos
Glicopeptídeos , Proteômica , Cromatografia Líquida , Glicopeptídeos/química , Glicosilação , Espectrometria de Massas/métodos , Proteômica/métodos
14.
Biomolecules ; 11(11)2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34827558

RESUMO

Chronic kidney disease (CKD) is defined as a decrease in renal function or glomerular filtration rate (GFR), and proteinuria is often present. Proteinuria increases with age and can be caused by glomerular and/or proximal tubule (PT) alterations. PT cells have an apical brush border membrane (BBM), which is a highly dynamic, organized, and specialized membrane region containing multiple glycoproteins required for its functions including regulating uptake, secretion, and signaling dependent upon the physiologic state. PT disorders contribute to the dysfunction observed in CKD. Many glycoprotein functions have been attributed to their N- and O-glycans, which are highly regulated and complex. In this study, the O-glycans present in rat BBMs from animals with different levels of kidney disease and proteinuria were characterized and analyzed using liquid chromatography tandem mass spectrometry (LC-MS/MS). A principal component analysis (PCA) documented that each group has distinct O-glycan distributions. Higher fucosylation levels were observed in the CKD and diabetic groups, which may contribute to PT dysfunction by altering physiologic glycoprotein interactions. Fucosylated O-glycans such as 1-1-1-0 exhibited higher abundance in the severe proteinuric groups. These glycomic results revealed that differential O-glycan expressions in CKD progressions has the potential to define the mechanism of proteinuria in kidney disease and to identify potential therapeutic interventions.


Assuntos
Microvilosidades , Animais , Taxa de Filtração Glomerular , Glicosilação , Ratos , Insuficiência Renal Crônica
15.
Biomolecules ; 11(11)2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34827675

RESUMO

Chronic kidney disease (CKD) is defined by a reduced renal function i.e., glomerular filtration rate (GFR), and the presence of kidney damage is determined by measurement of proteinuria or albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush-border membranes (BBMs) on PT cells play an important role in maintaining the stability of PT functions. The PT BBM, a highly dynamic, organized, specialized membrane, contains a variety of glycoproteins required for the functions of PT. Since protein glycosylation regulates many protein functions, the alteration of glycosylation due to the glycan changes has attracted more interests for a variety of disease studies recently. In this work, liquid chromatography-tandem mass spectrometry was utilized to analyze the abundances of permethylated glycans from rats under control to mild CKD, severe CKD, and diabetic conditions. The most significant differences were observed in sialylation level with the highest present in the severe CKD and diabetic groups. Moreover, high mannose N-glycans was enriched in the CKD BBMs. Characterization of all the BBM N-glycan changes supports that these changes are likely to impact the functional properties of the dynamic PT BBM. Further, these changes may lead to the potential discovery of glycan biomarkers for improved CKD diagnosis and new avenues for therapeutic treatments.


Assuntos
Microvilosidades , Animais , Glicômica , Glicosilação , Rim , Ratos
16.
J Proteome Res ; 20(10): 4862-4874, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448591

RESUMO

The mature HIV-1 envelope (Env) glycoprotein is composed of gp120, the exterior subunit, and gp41, the transmembrane subunit assembled as trimer by noncovalent interaction. There is a great body of literature to prove that gp120 binds to CD4 first, then to the coreceptor. Binding experiments and functional assays have demonstrated that CD4 binding induces conformational changes in gp120 that enable or enhance its interaction with a coreceptor. Previous studies provided different glycomic maps for the HIV-1 gp120. Here, we build on previous work to report that the use of LC-MS/MS, in conjunction with hydrophilic interaction liquid chromatography (HILIC) enrichment to glycosylation sites, associated with the assorted neutralizing or binding events of glycosylation targeted antibodies from different clades or strains. In this study, the microheterogeneity of the glycosylation from 4 different clades of gp120s is deeply investigated. Aberrant glycosylation patterns were detected on gp120 that originated from different clades, viral sequences, and host cells. The results of this study may help provide a better understanding of the mechanism of how the glycans participate in the antibody neutralizing process that targets glycosylation sites.


Assuntos
HIV-1 , Anticorpos Neutralizantes/metabolismo , Cromatografia Líquida , Glicosilação , Proteína gp120 do Envelope de HIV/genética , Humanos , Espectrometria de Massas em Tandem
17.
Analyst ; 145(20): 6656-6667, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-32804173

RESUMO

Retention time is the most common and widely used criterion to report the separation of glycans using Liquid Chromatography (LC), but it varies widely across different columns, instruments and laboratories. This variation is problematic when inter-laboratory data is compared. Furthermore, it influences reproducibility and hampers efficient data interpretation. In our endeavor to overcome this variance, we propose the use of the Glucose Unit Index (GUI) on C18 and PGC column-based separation of reduced and permethylated glycans. GUI has previously been utilized for retention time normalization of native and labeled glycans. We evaluated this method with reduced and permethylated glycans derived from model glycoproteins fetuin and ribonuclease B (RNase B), and then implemented it to human blood serum to generate C18 and PGC column-based isomeric glycan libraries. GUI values for glycan compositions were calculated with respect to the glucose units derived from dextrin, which was employed as an elution standard. The GUI values were validated on three different LC systems (UltiMate 3000 Nano UHPLC systems) in two laboratories to ensure the reliability and reproducibility of the method. Applicability on real samples was demonstrated using human breast cancer cell lines. A total of 116 permethylated N-glycans separated on a C18 column and 134 glycans separated on a PGC column were compiled in a library. Overall, the established GUI method and the demonstration of reproducible inter- and intra-laboratory GUI values would aid the future development of automated glycan and isomeric glycan identification methods.

18.
Electrophoresis ; 39(24): 3104-3122, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30203847

RESUMO

Protein glycosylation, an important PTM, plays an essential role in a wide range of biological processes such as immune response, intercellular signaling, inflammation, and host-pathogen interaction. Aberrant glycosylation has been correlated with various diseases. However, studying protein glycosylation remains challenging because of low abundance, microheterogeneities of glycosylation sites, and poor ionization efficiency of glycopeptides. Therefore, the development of sensitive and accurate approaches to characterize protein glycosylation is crucial. The identification and characterization of protein glycosylation by MS is referred to as the field of glycoproteomics. Methods such as enrichment, metabolic labeling, and derivatization of glycopeptides in conjunction with different MS techniques and bioinformatics tools, have been developed to achieve an unequivocal quantitative and qualitative characterization of glycoproteins. This review summarizes the recent developments in the field of glycoproteomics over the past 6 years (2012 to 2018).


Assuntos
Glicopeptídeos/análise , Glicoproteínas/análise , Espectrometria de Massas/métodos , Proteômica/métodos , Animais , Glicosilação , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA